K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Ta có: \(\frac{1}{1+x}=2-\frac{1}{1+y}-\frac{1}{1+z}\)

\(=1-\frac{1}{1+y}+1-\frac{1}{1+z}=\frac{y}{1+y}+\frac{z}{1+z}\)

\(\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)(BĐT Cô - si)

Tương tự, ta có: \(\frac{1}{1+y}\)\(\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)\(\frac{1}{1+z}\)\(\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân từng vế của các bđt trên, ta được:

\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8.\frac{xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow8xyz\le1\Rightarrow xyz\le\frac{1}{8}\)

(Dấu "="\(\Leftrightarrow x=y=z=\frac{1}{2}\))

17 tháng 1 2021

Lần sau bạn chú ý dùng chức năng Gõ công thức trực quan để người đọc dễ hiểu để bài nhé. Không hiểu không ai giúp bạn đâu.

Câu hỏi đã được hỏi nhiều lần, có thể xem tại: Cho x,y,z >0 t/m x y z=xyz. C/m \(\dfrac{1 \sqrt{1 x^2}}{x} \dfrac{1 \sqrt{1 y^2}}{y} \dfrac{1 \sqrt{1 z^2}}{z}\le xyz\) - Hoc24

NV
22 tháng 12 2020

\(x+y+z=xyz\Leftrightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2-2\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=2^2-2.1=2\) (đpcm)

15 tháng 7 2017

từ \(x+y+z=xyz\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)

\(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\)\(\Rightarrow ab+bc+ca=1\)

Thay vào \(\sqrt{x^2+1}\) r` phân tích nhân tử áp dụng C-S là ra :3

21 tháng 10 2019

Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)

Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))

làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)

vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)

[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)

dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)

NV
5 tháng 1 2021

Ta có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{1}{xy\left(x+y\right)+xyz}+\dfrac{1}{yz\left(y+z\right)+xyz}+\dfrac{1}{zx\left(z+x\right)+xyz}\)

\(\Rightarrow VT\le\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\right)=\dfrac{1}{x+y+z}.\left(\dfrac{x+y+z}{xyz}\right)=\dfrac{1}{xyz}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\)

7 tháng 1 2021

Cho e xin cách khác nữa đc ko ạ

31 tháng 7 2017

A(BT)=1/9((9/x+y+1) +(9/y+z+1)+9/(z+x+1)<=1/9(1/x+1/y+1+1/y+1/z+1+1/z+1/x+1)=1/9(2/x+2/y+2/z+3)

=1/9(2.(xy+yz+zx)/xyz)+3=2/9(xy+yz+zx)+1/3<=2/9.3+1/3=1(đpcm)

31 tháng 7 2017

Another way :|

Đặt \(\hept{\begin{cases}a=\sqrt[3]{x}\\b=\sqrt[3]{y}\\c=\sqrt[3]{z}\end{cases}}\Rightarrow\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\)và \(xyz=1\Rightarrow\left(abc\right)^3=1\Rightarrow abc=1\)

Áp dụng BĐT AM-GM ta có:\(a^3+b^3+1=a^3+b^3+abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+abc\)

\(\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\). Tương tự cũng có:

\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

Xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)